B2.1 Introduction to Representation Theory
 Problem Sheet 4, MT 2017

1. Find the character table of the alternating group A_{5}. (It may be helpful to remember that A_{5} acts as the group rotations of the regular icosahedron. You may also think about restriction/induction between A_{5} and S_{5} if it helps.)
2. A conjugacy class g^{G} of a group G is called real if $g^{G}=\left(g^{-1}\right)^{G}$ i.e., if g is conjugate to g^{-1}. A character χ of G is called real if $\chi(x) \in \mathbb{R}$ for all $x \in G$. Prove that the number of real conjugacy classes of a finite group is equal to the number of irreducible real characters. [Hint: Compute the dimension of the complex vector space

$$
V:=\left\{f: G \rightarrow \mathbb{C} \mid f(g)=f\left(h^{-1} g h\right)=f\left(g^{-1}\right) \quad \forall g, h \in G\right\}
$$

in two different ways.
3. Let G be a finite group with an irreducible representation $\rho: G \rightarrow$ $G L(2, C)$.
(a) Prove that G has an element a of order 2.
(b) For a as above show that either $\operatorname{det} \rho(a) \neq 1$ or else $\rho(a)$ is central in $G L(2, C)$.
(c) Deduce that a finite simple group cannot have an irreducible representation of degree 2 .
4. Prove that every finite group G has a faithful representation. Which finite abelian groups have a faithful irreducible representation?
5. Recall from the lectures that an element e of an algebra A is called an idempotent if $e^{2}=e$. Let G be a finite group and suppose V is a simple $\mathbb{C} G$-module. Define

$$
e_{V}=\frac{\operatorname{dim} V}{|G|} \sum_{g \in G} \overline{\chi_{V}(g)} g \in \mathbb{C} G
$$

(a) Prove that e_{V} is an element of the centre of $\mathbb{C} G$.
(b) Let V^{\prime} be a simple $\mathbb{C} G$-module. Prove that e_{V} acts on V^{\prime} by 0 if $V^{\prime} \not \equiv V$ and it acts by the identity on V.
(c) Prove that if $\left\{V_{i}: 1 \leq i \leq n\right\}$ is the set of irreducible G-representations (up to isomorphism) and $e_{i}=e_{V_{i}}$, then $e_{i}^{2}=e_{i}$ and $e_{i} \cdot e_{j}=0$ in $\mathbb{C} G$. How does this relate to the Artin-Wedderburn Theorem?
6. Determine the restriction of the standard representation of S_{4} to S_{3}. Compute the induced of the trivial representation of S_{3} to S_{4}. Use this to illustrate Frobenius reciprocity.
7. Decompose into irreducible G-representations the induced representation $\operatorname{Ind}_{H}^{G} W$ where $G=S_{4}$ and
(a) $H=\langle(1234)\rangle$ and $W=\mathbb{C} v$ is the one-dimensional representation defined by (1234) $\cdot v=i v$, where $i=\sqrt{-1}$.
(b) $H=\langle(123)\rangle$ and $W=\mathbb{C} v$ is the one-dimensional representation defined by $(123) \cdot v=e^{2 \pi i / 3} v$.
8. (optional) Here is another result of Burnside: Let V be an irreducible representation of a finite group G and assume that $\operatorname{dim} V>1$. Prove that χ_{V} takes the value 0 on some conjugacy class of G. (Hint: assume first that χ_{V} takes integer values.)
9. (optional) Suppose that V is a faithful representation of G. Show that every irreducible representation of G appears in some tensor power $V^{\otimes n}=$ $V \otimes V \otimes \cdots \otimes V$ of V. (Hint: for an arbitrary irreducible character χ, consider the infinite series $\sum_{n>0}\left\langle\chi, \chi_{V \otimes n}\right\rangle_{G} t^{n}$, where t is an indeterminate.)
10. (optional) Which irreducible representations of S_{n} remain irreducible when restricted to A_{n} ? Which irreducible representations of S_{n} are induced from A_{n} ?

